Speaker Profile
Hongjie Dai

Hongjie Dai PhD

Stanford, California, United States of America

Research and Clinical Research, Biochemistry and Molecular Genetics

Need a speaker for your conference?

The research of my group interfaces with chemistry, physics, materials science, and biological and medical science. We are interested in solid state and soft biological materials that have well-defined atomic structures. Our work is in the areas of materials chemistry, solid state chemistry and physics, scanning probe microscopy, molecular electronics, novel chemical and biochemical sensors and nanomaterial based biological transporters and carriers for drug, DNA and protein delivery and novel therapeutics applications of nanomaterials. Specific projects include, (1) Nanotube synthesis including self-oriented multi-walled carbon nanotube arrays [Fan et al., Science, 1999], highly quality single-walled carbon nanotubes (SWNTs) by chemical vapor deposition (CVD) and their patterned growth on substrates [Kong et al., Nature, 1998; Soh et al., Appl. Phys. Lett., 1999;] and single particle patterning for nanotube growth [Javey et al., 2005, JACS]. (2) Fundamental electrical and electromechanical Properties of Nanotubes [Tombler, Nature, 2000; Cao, PRL, 2003 & 2004; Kong, PRL, 2001]. (3) Suspended nanotube synthesis and quantum transport [Cassell, JACS, 1999; Franklin, 2000; Cao, PRL, 2004]. (3) Nanotube Molecular Sensors and Biosensors. We are exploring nanotubes as novel electronic sensors for gases and biomolecules in solutions [Kong et al., Science, 2000; Chen, PNAS, 2003; Chen, JACS, 2004]. (3) Molecular electronics with ultrahigh performance [A. Javey et al., Nature Materials, 2002; A. Javey, Nature, 2003]. (4) Organic Electronics with Quasi 1D Electrodes [Qi, JACS, 2004]. (5) Intracellular Molecular Transporters and Near Infrared Nano-Therapy. We showed recently that nanotubes are transporters capable of shuttling various cargos (e.g. proteins and SiRNA) across cell membranes [Kam, JACS, 2004&2005]. We also developed a method to destruct cancer cells selectively by using nanotubes and near-infrared light [Kam, PNAS, 2005]. This is an exciting new area in nanobiotechnology in our group with many exciting opportunities ahead. (6) Germanium Nanowires. We are exploring novel synthesis, characterization and applications of semiconducting nanowires [Wang, Angew. Chemie, 2002 *2005; JACS, 2004&2005].

EVENTS & ACTIVITIES (Speaking, Spoken, and Authored)
  • In-Person Event In-Person Event
  • Speciality Biotechnology
  • Calendar Mar 18 - 20, 2015
  • Location San Diego, California, USA